Измерение электрических величин при эксплуатации. И измерение электрических величин

Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (а пределах установленной погрешности) в течение известного интервала времени. Данное определение вскрывает суть средства измерений, заключающуюся в способности хранить (или воспроизводить) единицу физической величины, а также в неизменности размера хранимой единицы. Эти факторы и обусловливают возможность выполнения измерения.

По назначению средства измерений разделяют на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера — средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.

Различают следующие разновидности мер:

● однозначная мера — мера воспроизводит физическую величину, одного размера;

многозначная мера — мера воспроизводит физическую величину разных размеров;

набор мер — комплект мер разного размера одной и той же физической величины;

● магазин мер ~ набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях. Например, магазин электрических сопротивлений обеспечивает ряд дискретных значений сопротивлений.

Некоторые меры воспроизводят одновременно значения двух физических величин. Мера необходима при методе сравнения для выполнения сравнения с ней измеряемой величины и получения ее значения.

Измерительный преобразователь — техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Принцип его действия основан на различных физических явлениях. Измерительный преобразователь преобразует любые физические величины (электрические, неэлектрические, магнитные) в электрический сигнал.

По характеру преобразования различают аналоговые, аналого-цифровые преобразователи (АЦП), преобразующие непрерывную величину в числовой эквивалент, цифроаналоговые преобразователи (ЦАП), выполняющие обратное преобразование.

По месту в измерительной цепи преобразователи разделяют на первичный, на который непосредственно воздействует измеряемая физическая величина; промежуточный, включенный в измерительную цепь после первичного; преобразователи, предназначенные для масштабного преобразования, т.е. для изменения значения величины в некоторое число раз; передающие, обратные для включения в цепь обратной связи и др.

К измерительным преобразователям можно отнести преобразователи переменного напряжения в постоянное, измерительные трансформаторы напряжения и тока, делители тока, напряжения, усилители, компараторы, термопару и др. Измерительные преобразователи входят в состав какого-либо измерительного прибора, измерительной установки, измерительной системы или применяются вместе с каким-либо средством измерений.

Измерительный прибор (ИП) — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Приборы бывают показывающие и регистрирующие, цифровые и аналоговые.

Измерительная установка — совокупность функционально объединенных мер, измерительных преобразователей, измерительных приборов и других устройств. Предназначена для измерений одной или нескольких физических величин и расположена в одном месте, например, установка для измерения характеристик транзистора, установка для измерения мощности в трехфазных цепях и др,

Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки сигналов в разных целях.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, контролирующие, технической диагностики и др. Широкое распространение имеют микропроцессорные измерительные системы — управляющие вычислительные системы с микропроцессором (МП) в качестве узла обработки информации. В общем случае в состав МП входят: арифметическо-логическое устройство, блок внутренних регистров для временного хранения данных и команд, устройство управления, внутренние магистрали шин, шины ввода - вывода данных для подключения внешних устройств.

Чтоб измерять электрическую величину используют технические средства, которые имеют определенные метрологические характеристики. Их называют средствами измерения.

Измерительные установки и приборы, меры, измерительные преобразователи – это все относится к средствам измерения.

Для воспроизведения заданного значения физической величины используют меры.

Меры электрических величин – индуктивность, ЭДС, электрическое сопротивление, электрической емкость и т.д. Образцовыми называют меры высшего класса, по ним сверяют приборы и проводят градуировку шкал устройств.

Устройства, которые вырабатывают электрический сигнал в форме удобной для обработки, передачи, дальнейшего преобразования или хранения, но не поддающиеся непосредственному восприятию называют измерительными преобразователями. Для преобразования электрических величин в электрические относят: делители напряжения, шунты и т.д. Не электрических в электрические (датчики давления, энкодеры).

Если форма сигналов доступна для наблюдения – это измерительные приборы (вольтметры, амперметры и т.д.).

Совокупность измерительных приборов и преобразователей, мер, которые располагаются в одном месте и генерирует при измерении форму сигнала, удобную для наблюдению именуют измерительной установкой.

Все выше перечисленные средства можно рассортировать по следующим признакам: по способу регистрации и представления информации, ее виду и методу измерения.

По виду получаемой информации:

  • Электрические (мощность, ток и т.д.);
  • Не электрические (давление, скорость);

По методу измерения:

  • Сравнение (компенсаторы, измерительные мосты);
  • Непосредственная оценка (ваттметр, вольтметр);

По способу представления:

  • Цифровые;
  • Аналоговые (электронные или электромеханические);

Электроизмерительные приборы характеризуют такими основными показателями как: чувствительность, время установления показаний, надежность, погрешность, вариации показаний.

Самая большая разность показаний одного и того же устройства при одном и том же показании измеряемой величины называют вариацией показаний. Основная причина ее появления это трения в подвижных частях устройств.

Приращение перемещения указателя ∆а, относящееся к приращению измеряемой величины ∆х величают как чувствительность прибора S:

Если шкала устройства равномерна, то формула будет иметь вид:

Постоянная или цена деления прибора – обратная величина чувствительности С:

Равна она числу измеряемой величины на одно деление шкалы.

Потребляемая устройством из цепи мощность изменяет режим работы цепи. Это увеличивает вероятность появления погрешностей при измерении. Отсюда делаем вывод: чем меньше мощность, потребляемая из цепи, тем точнее прибор.

Время, за которое на дисплее (если приборы цифровые) или шкале (аналоговые), установится значение измеряемой величины после начала измерения – время установления показаний. Для аналоговых стрелочных устройств не должно превышать 4 секунды.

Сохранение заданных характеристик, точность показаний при установленных условиях работы и в течении заданного промежутка времени называют надежностью. Еще она характеризуется как среднее время исправной работы устройства.

Можно сделать вывод что при выборе измерительных устройств необходимо учитывать множество факторов, для корректной работы данных средств. Например, такие средства измерения как трансформаторы тока активно используются при измерении токов силовых линий, и не корректный выбор данных средств измерения может привести к авариям на линиях, вывода из строя дорогостоящего оборудования и остановки производства или отключением от питания целых городов.

Ниже вы можете посмотреть видео об основах метрологии и измерениях различных величин.

Измерение и контроль тока и напряжения в условиях агропромышленного производства – наиболее распространенный вид измерений электрических величин. В зависимости от рода, частоты и формы кривой тока применяют те или иные методы и средства измерений и контроля тока и напряжения. Ток и напряжение непосредственно измеряют электромеханическими и цифровыми амперметрами и вольтметрами со стрелочными или цифровыми отсчетными устройствами. Применение метода сравнения с мерой позволяет измерять величины с меньшими погрешностями, чем непосредственно.

Измерения в цепях постоянного тока. В условиях производства и при научных исследованиях возникает необходимость в измерении и контроле в установках постоянного тока от 10 –17 до 10 6 А и напряжений от 10 –7 до 10 8 В . Для этого используют различные средства.

Малые токи и напряжения измеряют непосредственно приборами высокой чувствительности - магнитоэлектрическими гальванометрами.

Постоянные токи не более 200 мА измеряютмагнитоэлектрическими миллиамперметрами.

Непосредственное измерение и контроль напряжений (до 600 В ) в установках постоянного тока осуществляют магнитоэлектрическими вольтметрами.

Для регистрации токов и напряжений в цепях постоянного тока используют самопишущие приборы.

Измерения в цепях синусоидального тока связаны с определением среднего (средневыпрямленного), действующего (среднего квадратичного) и амплитудного (максимального) значений тока и напряжения. Поскольку все эти значения связаны между собой коэффициентами формыилии амплитуды или, можно измерив одно из них, определить другие. Для измерения средних значений применяют электронные и цифровые приборы. Для измерения действующих значений тока (до 100А ) и напряжения (до 600В ) в цепях синусоидального токапромышленной частоты применяют в основном электромагнитные приборы. Для измерения тока и напряжения в установках сповышенными частотами (например, в установках с ручным инструментом) электромагнитные приборы не используют из-за больших погрешностей измерений. Для этого применяют тепловые, электронные и цифровые приборы.Мгновенные значения токов и напряжений различной формы и частоты регистрируют с помощью самопишущих приборов и электронно-лучевых осциллографов.

В трехфазных системах токи и напряжения измеряют теми же приборами, что и в однофазных цепях. В симметричной трехфазной системе для контроля линейных токов и напряжений можно использовать один амперметр или вольтметр. В несимметричных системах для контроля линейных напряжений часто применяют один вольтметр с переключателем.

Независимо от способа и применяемого средства измерений и контроля тока и напряжения результаты измерений содержат погрешности, одна из составляющих которых обусловлена потреблением мощности измерительными приборами. Так, при включении амперметра с сопротивлением
в цепь с напряжениемU по цепи протекает ток меньший, чем до включения прибора. Если ток в цепи до включения амперметра(здесь– сопротивление цепи без прибора), а после его включения, то относительная погрешность измерения тока

Поэтому для измерения тока следует выбирать амперметр с возможно меньшим сопротивлением, а для измерения напряжения – вольтметр с возможнобольшим сопротивлением. В этом случае погрешности измерений будут минимальными.

О влиянии метрологических свойств вольтметров на оценку качества напряжения можно судить по следующему примеру. Действующими для сельских электрических сетей нормами допускаются колебания напряжения на входе потребителя до 5 % от номинального. Если для измерения напряжения в сети 22011В (с учетом колебания) использовать вольтметр класса точности 1,5 с диапазоном измерений 0...250В , то он может показать 22014,75В , что превышает нормируемое колебание на1,7%.

Изучение электроизмерительных приборов. Методы расширения пределов измерения электроизмерительных приборов.

Цели работы:

1. Ознакомиться с методами расширения пределов электроизмерительных приборов;

3. Изготовить омметр и провести измерение сопротивлений с его помощью.

Приборы:

1. Гальванометр (миллиамперметр 50-100-200мА);

2. Амперметр (1-2) А;

3. Вольтметр (15-60) В;

4. Реостат (30 Ом);

5. Магазин сопротивлений типа Р-33;

6. Источник напряжения (типа ВС-24);

7. Проволока для изготовления шунта (медь);

8. Масштабная линейка;

9. Микрометр;

10. Соединительные провода

Примечание : Технические характеристики приборов записать в рабочую тетрадь.

Введение

Электрические измерения

Средства измерений – это особые технические средства, приводимые во взаимодействие с материальным объектом. Результатом измерений является значение физической величины. Физические величины подразделяют на непрерывные (аналоговые) и дискретные (квантованные). Большинство физических величин являются аналоговыми (напряжение, сила тока, температура, длина и т.д.). квантованной величиной является, например, электрический заряд.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

Существуют следующие основные группы средств для измерения электрических, магнитных и неэлектрических физических величин:

Аналоговые электромеханические и электронные приборы

Цифровые измерительные приборы и аналого-цифровые преобразователи

Измерительные преобразователи электрических и неэлектрических величин в электрические сигналы

Регистрирующие приборы (самопишущие приборы, осциллографы, магнитографы и др.

Измерительные информационные системы и вычислительные комплексы и т.д.

Все приборы делятся на аналоговые измерительные приборы (например, электроизмерительный прибор с отсчетным устройством в виде стрелки, перемещающейся по шкале с делениями) и цифровые измерительные приборы (показания представляются в цифровой форме). Цифровые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы более точны, более удобны при снятии показаний и, в общем, более универсальны. В них измеряемая величина (например, напряжение) автоматически сравнивается с эталонной величиной, после ряда преобразований результат сравнения выдается на экран в виде светящегося числа. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения величины во времени применяются региотрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые. В цифровых измерительных приборах (кроме простейших) используются электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный, вакуумный люминесцентный или жидкокристаллический индикатор (дисплей). Прибор обычно работает под управление встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,01 до 50 с и более, погрешность составляет 0,1 – 0,003 %. Погрешность АЦП последовательного приближения несколько больше (0,4 – 0,002 %), но зато время преобразования от ~ 10мкс до ~ 1мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

По роду измеряемой величины электроизмерительные приборы делят на следующие группы: амперметры (для измерения величины тока), вольтметры (для измерения напряжения), омметры (для измерения сопротивления), ваттметры (для измерения мощности), частотомеры (для измерения частоты), фазометры (для измерения сдвига фаз в электрических цепях) и т.д.

По способу представления результатов измерений приборы и устройства можно разделить на показывающие и регистрирующие. По методу измерения средства электроизмерительной техники можно разделить на приборы непосредственной оценки и приборы сравнения (уравновешивания). По способу применения и по конструкции электроизмерительные приборы и устройства делятся на щитовые, переносные и стационарные. По точности измерения приборы делятся на измерительные (в которых нормируются погрешности); индикаторы, или внеклассные приборы (погрешность измерений больше предусматриваемой соответствующими стандартами), и указатели (погрешность не нормируется).

По принципу действия или физическому явлению можно выделить следующие укрупненные группы: электромеханические, электронные, термоэлектрические и электрохимические. В зависимости от способа защиты схемы прибора от воздействия внешних условий корпуса приборов делятся на обыкновенные, водо-, газо-, и пылезащищенные, герметические, взрывобезопасные.

Измерение электрических величин

Гальванометр – электроизмерительный прибор с неградуированной шкалой, имеющий высокую чувствительность к току или напряжению и предназначенный для измерения весьма малых токов, напряжений, величины заряда. Используя комбинацию гальванометра с различными шунтами и добавочными сопротивлениями, можно изготовить приборы для измерения различных электрических величин (амперметры, вольтметры и т.д.)

Измерение токов

Для непосредственного измерения тока в цепи применятся амперметры, которые включаются в цепь так, чтобы через них проходил весь измеряемый ток, т.е. последовательно тем участкам цепи, где необходимо измерить ток. Амперметр должен иметь малое сопротивление, чтобы его включение в цепь не могло заметно изменить величину тока в цепи. Существуют четыре схемы включения амперметра в цепь. Первые две (рис. 1а, 16) предназначены для измерения постоянного тока, а две вторые схемы

(1в,1г) – для измерения переменного тока.

Вторая и четвертая схемы (рис 16,1 г) применяются в тех случаях, когда номинальные данные амперметра меньше измеряемой величины тока. В этом случае при определении истинного значения тока нужно учитывать коэффициент преобразования.

Для расширения пределов измерения амперметра параллельно ему необходимо присоединить проводник, называемый шунтом. Признаком параллельного соединения является разветвление тока. В данном случае электрический ток I 0 разветвляется на два тока I 0 и I m (рис.2), где R r – сопротивление гальванометра (исходного амперметра), I r – ток, протекающий через гальванометр (исходный амперметр), R m – сопротивление шунта, I ш – ток, протекающий через шунт, I 0 - ток, измеряемый амперметром с шунтом («новый» прибор).

Из закона сохранения зарядов следует, что:

I a = I m +I a (1)

Напряжение при параллельном соединении в ветвях одинаково, поэтому можно записать:

U= I m R m =I a R a

Откуда следует, что

При параллельном соединении проводников токи в отдельных проводниках обратно пропорциональны их сопротивлениям, т.е. чем меньше сопротивление шунта по сравнению с сопротивлением приборов, тем большая часть измеряемого тока отводится через шунт.

Коэффициентом шунта называется число, показывающее, во сколько раз предельный ток, измеряемый амперметром с шунтом, больше предельного тока, измеряемого гальванометром (исходной амперметром) без шунта:

Разделив обе части равенства (1) на I r , получим:

Но, так как

Равенство (4) можно записать так:

n = R r / R ш +1

Отсюда сопротивление шунта равно:

Таким образом, чтобы измерить амперметром в n раз больший ток, необходимо взять сопротивление шунта в (n-1) меньше сопротивления исходного амперметра.

где ρ – удельное сопротивление материала шунта,

L - длина проводника

S = / 4 – площадь поперечного сечения проводника, из которого изготовлен шунт

d – диаметр проволоки

Обычно шунты изготавливают из манганина, имеющего большое удельное сопротивление и малый термический коэффициент сопротивления.

Измерение напряжений

Для измерения напряжений в цепи применяются вольтметры, которые включаются в цепь параллельно (к тем точкам цепи, между которыми измеряется напряжение). Вольтметр должен иметь очень высокое внутреннее сопротивление, чтобы не влиять заметно на режим исследуемой цепи. Измерение напряжения производится вольтметром. Здесь также возможны четыре различных схемы подключения прибора (рис.3).

В этих схемах также используются методы расширения пределов измерения напряжения (вторая и четвертая схемы рис.3б, 3г), для расширения предела измерения вольтметра последовательно с ним включается добавочное сопротивление R 0 (рис.4).

По закону Ома:

или (7)

Основы метрологии

1. Метрология – наука об измерениях

a. Предмет и задачи метрологии

b. Метрологическое обеспечение и его структура

2. Понятие измерения, его роль и место в метрологии

a. Понятие измерения

b. Классификация измерений

c. Характеристики измерений

d. Методы измерений и их классификация

3. Единицы физических величин и их системы. Основное уравнение измерений

4. Средства измерений

a. Классификация средств измерений

b. Метрологические характеристики средств измерений

c. Классы точности средств измерений и их нормирование

d. Структурные схемы средств измерений. Связь между характеристиками и структурой средства измерений

5. Передача размера единиц от эталонов образцовым и рабочим средствам измерений. Поверка средств измерений

a. Поверка средств измерений. Основные цели и задачи. Качество поверки и ее периодичность.

b. Эталоны и образцовые средства измерений, их место в системе воспроизведения и передачи размеров единиц

c. Поверочные схемы и способы их построения.

d. Организация и проведение поверки средств измерений.

Погрешности измерения

  1. Общие сведения о погрешности измерения
  2. Классификация погрешностей
  3. Систематические погрешности

a. Понятие систематической погрешности

b. Причины возникновения систематических погрешностей

c. Обнаружение и исключение систематических погрешностей

  1. Случайные погрешности

a. Понятие случайной погрешности измерений и причины их возникновения.

b. Генеральная совокупность и ее числовые характеристики

c. Важнейшие функции распределения

d. Числовые характеристики генеральной совокупности

e. Выборка и ее характеристики

f. Построение доверительного интервала

g. Исключение грубых погрешностей

Обработка и представление результатов измерения

1. Однократные прямые измерения

2. Обработка результатов прямых измерений с многократными наблюдениями

3. Обработка и представление результатов косвенных измерений.

4. Выбор средств измерений, обеспечивающих необходимое качество измерений.

5. Обработка результатов измерений при наличии нескольких источников погрешности.

6. Представление результатов измерений

Технические средства и методы измерения электрических величин

1. Меры электрических величин, их устройство и характеристики

a) Мера ЭДС. Назначение, устройство, основные характеристики.

b) Меры сопротивления, емкости и индуктивности. Назначение, устройство, основные характеристики.

2. Аналоговые средства измерения

a) Устройство и характеристики измерительных преобразователей, используемых в средствах измерения электрического тока и напряжения

i. Пассивные преобразователи без изменения рода тока. Назначение, устройство, основные характеристики.

ii. Пассивные преобразователи с изменением рода тока

iii. Активные преобразователи

b) Электромеханические измерительные механизмы и средства измерений на их основе

i. Магнитоэлектрический измерительный механизм. Назначение, устройство, основные характеристики.

ii. Электромагнитный измерительный механизм. Назначение, устройство, основные характеристики.

iii. Электродинамический измерительный механизм. Назначение, устройство, основные характеристики.

iv. Электростатический измерительный механизм. Назначение, устройство, основные характеристики.

c) Электронные аналоговые средства измерений

i. Электронные вольтметры постоянного тока. Назначение, устройство, основные характеристики.

ii. Электронные вольтметры переменного тока. Назначение, устройство, основные характеристики.

d) Универсальный электронный осциллограф. Назначение, устройство, основные характеристики.

e) Компенсаторы и мосты постоянного тока. Назначение, устройство, основные характеристики.

3. Цифровые средства измерения

a) Принципы работы АЦП. Дискретизация во времени и квантование по уровню.

b) Восстановление сигнала по дискретным отсчетам. Теорема Котельникова (без доказательства)

c) Основные характеристики и источники погрешности АЦП.

d) Коды и системы счисления

i. АЦП последовательного счета. Принцип работы и основные характеристики.

ii. АЦП поразрядного уравновешивания. Принцип работы и основные характеристики

f) ЦАП. Принцип работы устройства сравнения.

g) Принцип работы, устройство и основные характеристики цифровых средств измерения последовательного счета

i. Цифровой измеритель временных интервалов. Назначение, устройство, основные характеристики.

ii. Цифровые фазометры (без усреднения и с усреднением). Назначение, устройство, основные характеристики.

iii. Цифровые частотомеры и периодомеры. Назначение, устройство, основные характеристики.

iv. Цифровой время-импульсный вольтметр. Назначение, устройство, основные характеристики.

Что еще почитать